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1. Introduction

Sisal, Streams and Iterations in a Single Assignment Language, a
derivative of Val, was defined in 1983 [4] and revised in 1985 [5].
Since 1985 the language definition has remained constant providing a
stable testbed for programming language research and functional pro-
gram development. The Sisal Language Project began as a collabora-
tive effort between Lawrence Livermore National Laboratory, Colorado
State University, University of Manchester, and Digital Equipment
Corporation. Today, only LLNL and CSU continue to develop and pro-
mote the language; however, Sisal and its intermediate form IF1 [7]
are being used by research groups across the United States and around

the World.
The Project has six objectives:

1. to define a general-purpose functional language,

2. to define a language-independent intermediate form for
dataflow graphs,

3. to develop optimization techniques for high perfor-
mance parallel applicative computing,

4. to develop a microtasking environment that supports
dataflow on conventional computer systems,
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5. to achieve execution performance comparable to imper-
ative languages, and

6. to validate the functional style of programming for
large-scale scientific applications.

The objectives emphasize usability and performance. Goals four, five,
and six set the Sisal effort apart from other functional language pro-
jects. They reflect the computing environment at Lawrence Livermore
National Laboratory and other government facilities.

Functional languages promote the development of correct, deter-
minate parallel programs. Functional programs are free of aliases, side
effects, and time dependent errors. Results are determinate regard-
less of architecture, operating system, or execution environment.
Unlike parallel imperative languages, functional languages decrease
the programming burden. Users can define only what is to be com-
puted and can encode only the data dependencies among operations.
The compiler and the run time system are responsible for scheduling
operations, communicating data values, synchronizing operations, and
managing memory. It is as easy to write a functional program, which
is implicitly parallel, as it is to write a sequential imperative program.
Relieved of parallel programming’s most difficult chores, the user is
free to concentrate on algorithm design and application development.

Section 2 introduces Sisal, discussing those language features used
in subsequent sections. For the full language definition see [5]. In
Sections 3, 4, 5, and 6 we present solutions to the four Salishan pro-
blems. Since functional programming requires a different thought
process than imperative programming, we describe how we formu-
lated each solution. In Section 7, we conclude with some general
remarks regarding Sisal and functional programming.
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2. Language Definition

Sisal is a strongly typed, general purpose functional language that
supports data types and operations for scientific computing. To min-
imize learning time and enhance readability, the creators of Sisal
adopted a Pascal-like, block syntax delimited by keywords. Since most
scientific programs are written once but maintained over many years,
the designers sought to improve readability wherever possible. Sisal
programs are slightly wordy, but easy to read and to understand.
Some language features exchange elegance for readibility.

Sisal has several important semantic properties. First, the language
is mathematically sound—functions map inputs to outputs without side
effects. Second, names are referentially transparent; that is, they
stand for values rather than memory locations. Third, the language is
single-assignment. A name may be assigned a value only once within
each scope. A Sisal tenet, not required by its functional semantics but
enforced by the compiler to aid readability, is that all names must be
defined before they are used.

2.1. Types

Sisal supports the standard scalar data types: boolean, char, in-
teger, real, and double_real. It also includes the aggregates: ar-
ray, record, stream, and union. Users may define aggregate types
by using the type statement. For example,

type Istr = stream [integer];
type OneR = array [real] ;

type TwoR = array [OneR];

define, respectively, a stream of integers, an array of reals, and an ar-
ray of arrays of reals. The latter is equivalent mathematically to a two-
dimensional array of real values.
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In Sisal both arrays and streams are homogeneous aggregates of any
standard or user-defined type. Arrays support random access whereas
stream elements are available only in FIFO order. That is the i-th ele-
ment of a stream must be consumed before the (i + 1)-st element may
be consumed. Consequently, Sisal streams cannot deadlock. Array
declarations include neither size nor bounds information. An array’s
size, lower bound, and shape are determined during execution. Since
the components of a multi-dimensional array are arrays, each may have
a different length and lower bound. We say that Sisal's arrays are
ragged.

The types of names are not declared; instead, the compiler infers
the type of each name from the surrounding context. The two excep-
tions are the formal parameters and results of functions. These too
could be inferred, but at the expense of readability. The types are de-
clared in the function headers.

2.2. Functions

A function can take zero or more arguments and must return one or
more values. The type of each formal parameter and result value is
declared in the function header. For example, the function circle

function circle(radius: real returns real, real)
2.0 * 3.14 * radius, 3.14 * radius * radius

end function

takes one formal parameters radius, of type real, and returns two
real values, the circumference and area of the circle. The number of
values a function or an expression returns is referred to as the arity of
the function or expression. A function has access to only its argu-
ments. There are no global values and functions do not retain state be-
tween invocations. The effect of invoking a function is limited to the
values it returns—there are no side effects.
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A function name and list of actual parameters can appear anywhere
an expression of the same type and arity can appear. For example, the
statements

circum, area := circle(radius);
and
a, b := new_function(circle(radius));

are legal statements provided new function takes two real values as
input and returns two results. But the statement

circum := circle(radius)

is illegal because there is only a single name on the left-hand side.

2.3. Let expressions

The let expression defines a set of names, and then uses the
names to compute one or more values. The expression,

let

2 the let clause
in

% the in clause
end let

consists of two clauses: a let clause and an in clause. The latter defines
the arity, type, and value of the let expression. For example, the ex-
pression

let
pi := 3.14
in
2.0 * pi * radius, pi * radius * radius

end let:;
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has arity two, type (real, real), and returns the circumference and
area of a circle. The let expression is equivalent to the function cir-
cle defined before and could replace the two expressions in the func-
tion’s body.

2.4. For expressions

The for expression,

for <range generator>
<loop body>
returns <returns clause>

end for

is the parallel loop form in Sisal. It has three parts: a range generator,
a loop body, and a returns clause.

The range generator is a dot or cross product of a set of sequences
or scatters (see Figure 1). An instance of the loop body is executed for
each index, value, or n-tuple of the range. The range generator speci-
fies the order of reduction, and defines the size and structure of any
generated aggregate object. For example, the expression

for i in 1,n cross j in 1,m
returns array of (i + 3j)

end for

returns a two dimensional array of n rows and m columns. At first,
many Sisal programmers fail to understand the subtleties of this syn-
tax. A common mistake is to write the transpose of an (n x m) matrix
as

for i in 1,n cross j in 1,m
returns array of X({j, i}

end for
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Range Generator Comments
for x in A a scatter
for i in 1, n a sequence
for x in A dot y in B a dot product of two scatters
for i dn 1, n ¢cross j in 1, n a cross product of two sequences

Figure 1 - Forms of the Range Generator

But this returns an (n x m) matrix and not an (m x n) matrix. The cor-
rect expression is

for i in 1,m cross j in 1,n.
returns array of X[j, i)

end for

The loop body is a set of name definitions. Sisal’s semantics pre-
vents an instance of the loop body from referencing values computed
by any other instance. Thus, the instances of the loop body are data
independent and may be executed in parallel.

The returns clause defines the arity, type, and value of the for ex-
pression. Each result is a reduction of values defined in the loop body.
The order of reduction is determinate and equivalent to the sequential
execution of the loop bodies. Figure 2 lists the eight reduction opera-
tions supported by Sisal. The values contributing to a reduction can be
filtered by including a when clause. For example,

array of x when x > 0

returns an array of only positive values. If none of the values are posi-
tive, an empty array of the same type as x is returned

As an illustration of the for expression, consider matrix multipli-
cation. Let a and b be real arrays of size (n x m) and (m x n), respec-
tively, then the product of a and b is
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Returns Clause Comments
value of x returns the last value of x
array of x returns an array of x values
stream of x returns a stream of x values
value of sum x returns the sum of x values
value of product x returns the product of x values
value of least x returns the smallest x value
value of greatest x returns the largest x value
value of catenate x returns the array formed by catenating
the x values (note x must be an array)

Figure 2 - The Returns Clause

m
Y ali, k) *blk, j), 1<i,j<n (2.1)
k=1

We begin by writing

function mmul(n,m: integer; a,b: TwoR returns TwoR)

end function

which defines mmul as a function of four inputs: n and m of type inte-
ger, and a and b of type TwoR (defined previously). The function re-
turns a single value of type TwoR, the product of a and b.

The function’s body is the Sisal expression for Equation 2.1. Since
the equation computes n? independent real values and assembles them
into an array, we want to use the following for expression

for i in 1, n cross j in 1, n
Cij :=
returns array of Cij

end for
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Cij is the inner product of the i-th row of a and j-th column of b. We
write the inner product of two m-element vectors as

for k in 1, m
returns value of sum ali,k] * blk,3J]

end for

Putting everything together, we have

function mmul (n,m: integer; a,b: TwoR returns TwoR)
for i in 1, n cross j in 1, n
Cij (= for kin 1, m
returns value of sum a(i,k] * blk, j]
end for
returns array of Cij
end for

end function

There are three important observations to make. First, the func-
tion expresses only the necessary mathematical computations. The
implementation of the function, which is 100% parallel, is unspeci-
fied. Second, the function is dynamic. The resources necessary to ex-
ecute the expression depend entirely on n and m. There is no static
allocation of memory or processors. Third, unlike an imperative func-
tion which would first allocate the memory for the result and then fill
it in, the Sisal function consists of a single expression that both cre-
ates and defines the result.

2.5. For Initial expressions

The for initial expression,
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for initial for imnitial
<initialization> <initialization>
while <test> repeat repeat
<loop body> <loop body>
returns <returns clause> until <test>
end for returns <returns clause>
end for

permits loop carried dependencies, but retains single assignment se-
mantics. It comprises four segments: initialization, test, loop body,
and result clause. The initialization segment defines all loop constants
and assigns initial values to all loop-carried names. It is the first iter-
ation of the loop.

The test may appear either before or after the body. Two forms are
supported in Sisal: while <test> and until <test>. The loop body
computes new values for all loop-carried names. An instance of the
body may refer to any loop-carried name defined in the previous in-
stance by prefixing the name with the keyword old. Thus, old a
refers to the value of a on the previous iteration. Note that defining
the value of a on the present iteration does not destroy the old value.
The rebinding of loop-carried names to values is implicit and occurs
between iterations.

The returns clause of the for initial expression is identical in
syntax and semantics to the returns clause of the for expression.

As an example of the for initial expression, consider the func-
tion first sum. Let x be real vector of length n, then y(i is
i

y(i) = zx(j), 1<i<n (2.2)
=1

While the elements of y are data independent, using a for expression
would result in O(n?2) additions. A more efficient algorithm can be had

using a for initial expression.
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First, we rewrite Equation 2 as

{x(l)

yli- 1) + x(i) (2.3)

y(i) =

~, b=

t\) ~.
in M
AN
3

and then write Equation 2.3 in Sisal

function first_sum(n: integer; x: OneR returns OneR)
for initial
i:=1;
y := x[1]
while i < n repeat
i :=o0l1ld i + 1;
y = o0ld y + x[i]
returns array of y
end for

end function

Again, the translation from mathematics to Sisal is straightforward.
The how of the loop—allocating memory for the result and assigning
values to positions—is implicit, implied by the semantics of the ex-
pression.

2.6. Array and stream operations

Figures 3 and 4 list some of the array and stream operations in
Sisal. It is important to remember that these, and all operations in
Sisal, retain single-assignment semantics. The statement

Af[1: 0, 1, 2]

does not replace the first, second, and third elements of A, as in an
imperative language, but instead, creates a new array identical to A
with the first, second, and third elements set to O, 1, and 2. The
function

stream first (A)
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Array Operations

. Feo

Comments

array OneR
array OneR [1: 1.0, 2.0,
array £ill(l, n, 0)

Afl: 0, 1, 2]

A|lB

creates an empty array (type 1s required)

creates an array of real values with lower
bound 1 (type is optional)

creates an array of Os, lower bound 1,
upper bound n

creates a new array idential to A with
elements 1, 2, and 3set to 0, 1, and 2

creates a new array which is the
catena-tion of A and B

Figure 3 - Array Operations

Stream Operations

Comments

stream StrI [1, 2, 3,

stream append (A, v)

Al B

stream rest (3)

stream first ()

stream empty ()

creates a stream of integer values (type
is optional)

creates a new stream idential to A with
the element v appended to the tail

creates a new stream which is the
cate-nation of Aand B

creates a new stream identical to A with
the first element removed

returns the first element of A

true if A is empty and the producer has
terminated

Figure 4 - Stream Operations

returns the first element of A but does not modify A (i.e., it does not
remove the first element). To define a stream comprised of all the
elements of A except the first element, the user must write
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B := stream_rest (a)

stream_empty (A) returns true only if all of 2 is consumed and the
producer of A has terminated. It does not return true simply because
no value is available. Such behavior would introduce non-determinism
and is not supported. Moreover, stream first always returns a value.
If the producer is slow and no value is available, the function waits for
a value. If the stream is empty and the producer has terminated, an
error value is returned.

On close inspection of the array operations listed in Figure 3 and
the loop structures described in the previous section one might con-
clude that Sisal's single-assignment semantics, and the copy and
memory management operations implied by those semantics, would
make Sisal inappropriate for scientific computing. However, studies
show [1, 6] that compile-time analysis can eliminate virtually all un-
necessary copy and memory management operations. In fact, Sisal’s
conservative semantics and explicit array operations aid the analysis.
We fully expect to achieve execution performance comparable to im-
perative languages.

3.0. Hamming’s Problem, Extended

3.1. Understanding Hamming's Problem

Given an integer n and a set of primes {a, b, ¢, . . .}, generate in
order and without duplicates all integers of the form

a b ck ...<n

One way to solve Hamming's Problem is to compute the cross product
of the sets

{a |l i20}, {B1j20},{ckl k=20}, ...

forming a set of tuples of the form
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(a, bJ, ck, ..)) i,j, k=20

Multiplying together the elements of each tuple, sorting the products
in increasing order, and discarding the integers greater than n, solves
Hamming’s Problem.

For example, let n = 10 and the set of primes be {2, 3, 5}. First we
form the three sets

{1, 2, 4, 8}, (1, 3, 9}, (1, 5]}

Note that we have discarded integers greater than 10. Next we form
the cross product of the three sets

( .11, 1,1,5), (1,3,1), (1,3,5), (1,9,1), (1,9,5), (2.1,1), (2,1,5),
2,3,1), (2,3,5), (2,9,1), (2,9,5), (4,1,1), (4,1,5), {4,3.1), (4,3,5),
4.9,1), (4,9,5), (8,1,1), (8,1,5), (8,3,1), (8,3,5), (8,9.1), (8,9,5)

}

Multiplying together the elements of each tuple, sorting the products
in increasing order, and discarding values greater than 10, yields the
set

{1,2,3,4,5,6,8,9, 10}

Figure 5a shows a task graph to compute the powers of 2. It con-
sists of a task and three edges: i, s, and b. The edges act as FIFO
queues of zero or more values. The instruction set for the task is:

1. remove the token on edge i, call its value x
2. repeat

3. output x on edge s

4. output 2 times x on edge b

5. remove the token on edge b, call its value x
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Figure 5a - Task graph to compute the powers of 2

b edge b edge b edge

y | y | y |

s edge s edge s edge s edge

Figure 5b - Task graph to compute 2' 3/ 5k

. 18 15
12 10
32 16 8 6 4 3 2 1

Figure 5c - A snapshot of task graph 5b

Figure 5b shows three instances of the task graph wired together.
The tokens issued on the rightmost s edge are the solution to Ham-
ming’s Problem for the set of primes {2, 3, 5}. The instruction set for
the second and third task does require a slight modification. On each
iteration, except the first, the tasks have a choice of removing a token
from either of the incoming s or b edges. By removing the smaller of
the two values, the tasks order the values output on the outgoing s
edge. Figure 5c shows a snapshot of task graph in Figure 5b.
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3.2. A Sisal solution

In this section we explain how to express the task graph shown in
Figure 5b in Sisal. We use a for initial expression and streams to
spawn a task per prime and establish a FIFO queue between tasks i and
i+ 1, i2 1. The Sisal code is

for initial

i = 0;

S_stream := stream[1]
while i < array_size(primes) repeat

i :=901d i + 1;

s_stream := powers(n, primes[i], old s_stream)
returns value of s_stream

end for

The initialization clause defines i and s_stream, an integer stream
of one element. The loop body is executed iteratively, once for each
prime. The body increments i and calls the function powers which
takes three arguments: n, the i-th prime, and old s_stream (the value
of s _stream on the previous iteration). The value of the for initial
expression is the value of s_stream defined on the last iteration (i.e.,
returned by the last call to powers). The for initial expres-
sion invokes an instance of powers for each prime and establishes the
FIFO queue s_stream between successive instances. If streams are
implemented lazy, as is our intention, the instances will exist concur-
rently exploiting the producer/consumer parallelism within the task
graph.

The function powers implements the task graph shown in Figure
5a. At one time it was thought that Sisal could not express such cyclic
computations, but this is not correct. Sisal can express cyclic compu-
tations under three conditions: 1) the initial conditions of the input
edges are known (i.e., the computation begins determinately), 2) the
cyclic computation can be unrolled into a sequence of tasks, and 3)
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task output is synchronized with task input (i.e., a task can always wait
for the next input before issuing the next output). The task graph in
Figure 5a satisfies all three requirements.

The Sisal code for powers is given in the Appendix. Each iteration
of the for initial expression removes the smaller of the values (call
it token) at the head of o1d s_stream and old b_stream, appends the
token to the output stream, defines a new s_stream, and defines a new
b_stream with token * prime appended at the end. Since the task may
exhaust s_stream, a test for stream_empty is necessary. On the other
hand, the task can never exhaust b_stream since it appends a new
value to the stream each iteration.

Notice how different the functional and imperative solution pro-
cesses are. The functional programmer first specifies the computation
logically and then translates the specification into code. He thinks in
terms of expressions that, when executed, blossom into the needed
task graphs. The scheduling of tasks, allocation of memory, and the
synchronized access to shared data are implicit—the details are han-
dled automatically by the compiler and runtime system. The impera-
tive programmer might begin solving Hamming's Problem by first
defining FIFO queues, a set of queue operations, and an access proto-
col for readers and writers. Then after writing code for the task bod-
ies, he would explicitly wire together the tasks using the queues being
careful not to violate the semantics of the operations or the access
protocol. Insuring correctness is entirely his responsibility. The com-
piler and runtime system provide little or no support. Since it is easy
to introduce subtle time-dependent errors into imperative parallel
programs, the programming process is difficult, frustrating, and error
prone.
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4. The Paraffins Problem
4.1. A solution based on oriented trees

A paraffin is a hydrocarbon molecule with the chemical formula
CnHaonsa. The Paraffins Problem asks us to output in increasing size the
chemical structure of all paraffin molecules with n or fewer carbon
atoms, including all isomers but no duplicates. Figure 6 show the par-
affins of size 1, 2, 3, and 4. Since the placement of the carbon atoms
uniquely defines the placement of the hydrogen atoms, we draw only
the former. Isomers are different arrangements of the same number
of carbon atoms. They have the same chemical formula, but different
chemical properties. An isomer is a different arrangement of atoms,
and not merely a rotation or reflection of a set of atoms (Figure 7).



Sisal 19

o
Omg |
O—+0O—>@® O—+»9<+0O

T T T G

Figure 8 - Oriented trees of size 1, 2, 3, and 4

In [8]. Turner presents a functional solution to the Paraffins Pro-
blem that first generates a list of paraffins and then filters out dupli-
cates. Removing the duplicates is expensive and greatly increases the
execution time of Turner’s solution. A more efficient functional algo-
rithm exists based on oriented and free trees [3]. Since this algorithm
generates no duplicates, it does not require any post-processing.

An oriented tree is a connected, directed, acyclic graph. The tree
includes a unique node called the root. All nodes other than the root
are the source of a single arc, and there exists a unique path from ev-
ery node to the root. The root is the source of no arc and is the sink
of one or more arcs. The maximum number of arcs incident on any
node is called the fan-in. Figure 8 shows the oriented trees of size 1,
2, 3, and 4 with fan-in less than 4. We define the relation, <, on ori-
ented trees as: let Ty be the j-th oriented tree of size i then

TU<Tkl=>(i<k)v(i=k/\j<l).

Careful inspection of Figure 8 yields an efficient dynamic program-
ming algorithm for constructing oriented trees of size n with fan-in
three from the trees of size less than n with fan-in three. Logically,
the algorithm is:

1. repeat for all choices of ¢, d, e, f, g, and h
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2. draw a root with fan-in three (call the three edges
left, bottom, and right)

3. choose three oriented trees T.q, Ter, and Tgn, poOSSi-
bly of size zero, such that

(c+t+e+g=n-1)A(Tca< Tef < Tygn) (4.1)

4. attach Tcq, Tef, and Typ to the left, bottom, and right
edges, respectively.

Figure 9 illustrates how the algorithm constructs oriented trees of size
four.

Paraffins with n or fewer carbons can be built from oriented trees of
size less than or equal to n/2. The carbon atoms of a paraffin molecule
form a free tree—an acyclic, connected graph with undirected edges.
The tree’s centroid is the node or nodes of minimum weight, where a
node’s weight is the size of its largest subtree. An important feature of
a free tree is that its centroid is unique. If the number of nodes in the
tree is odd, the centroid is a single node; if the number of nodes is
even, the centroid is either a single node or two adjacent nodes. This
fact motivates an efficient parallel algorithm for constructing paraffins
of size n from the oriented trees of size less than n/2. Logically, the
algorithm is:

Single Centroid:

1. repeat for all choices of a, b, ¢, d, e, f. g, and h

2. draw a root with fan-in four (call the four edges top,
left, bottom, and right)

3. choose four oriented trees Tgp, Ted, Tef, and Tgn,
possibly of size zero but less than n/2, such that

(a+c+e+g=n-1) A (Tap < Teqg £ Ter < Tgn) (4.2)

4. attach Tap, Tca. Tef.. and Tgp, to the top, left, bottom,
and right edges, respectively.
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Figure 9 - Constructing oriented trees of size 4

Double Centroid:
1. repeat for all choices of b and d

2. choose two oriented trees ngb and Trq
2

3. join together the roots of the two trees.

Figure 10 illustrates how the algorithm would construct paraffins of
size 6.

The construction process must use oriented trees because it must
consider each arrangement of nodes once per distinguishable set of
nodes in the arrangement. For n = 3, there are two sets of distin-
guishable nodes: the end nodes and the interior node. There are two
oriented trees: one whose root is an end node, and one whose root is
the interior node. Note that there is only one free tree of size 3 (pro-
pane). Joining together the roots of the two oriented trees in all three
ways—end node to end node, end node to interior node, and interior
node to interior node—constructs the three isomers of size 6 with

double centroid.
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Figure 10 - Constructing paraffins of size 6
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4.2. Constructing paraffins in Sisal

Writing Sisal functions to implement the algorithms described in
the previous section is straightforward. We represent both oriented
trees and free trees (paraffins) as character strings; i.e.,

type trees = array([character]

For the first five paraffins (Figure 6), our program generates the char-
acter strings '

(C) ((C) (©)) (C(C) (C)) ((C(C)) (C(C))) (C(C) (C) (C))

If the string is an oriented tree, then the first C is the root of the tree
and the parenthesized lists of Cs at the same level as the root are the
subtrees. If the string is a paraffin with a single centroid, the first C is
the centroid. If the string is a paraffin with a double centroid, then
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the string divides into two strings with equal number of Cs. The cen-
troid is the first C in each half.

We store the oriented trees and free trees (isomers) of size i as an
array of trees,

type TreeArrayl = array[tree]

and the oriented trees and free trees (paraffin molecules) of size < n as
an array of arrays of type tree,

type TreeArray2 = array([TreeArrayl]

The main function Paraffins takes an integer argument, n, and re-
turns one value of type TreeArray2. Since the number of isomers is
different for different number of carbon atoms, the result array will be
ragged. The body of the function is the let expression,

let Trees := OrientedTrees(n/2)
in for i in 1, n
isomer := if mod(i, 2) = 1 then

OneCentroid(i, Trees)
else
OneCentroid(i, Trees) ||
TwoCentroid(i, Trees)
end if
returns array of isomers
end for

end let

The let clause defines the oriented trees and the in clause builds the
paraffins of size 1 through n. The result array is built in parallel and
returned in order.

The function OrientedTrees (see the Appendix) implements the
dynamic programming algorithm described in the previous section.
The function, a for initial expression, takes n as input and returns
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the oriented trees of size [0 ... n/2]. The initialization clause defines
the oriented trees of size O, 1, and 2, while the i-th iteration of the
body, 3 < i< n/2, builds the oriented trees of size i from the oriented
trees of size less than i (i.e., o1d Trees). The trees are built by XTrees
called from within the double-nested for expression

forc in 1, (i - 1)/3 cross

einc, (1 -1-2¢)/2

We use the same names in the expression as in the logical description
in the precious section. The ranges for ¢ and e are set such that an in-
stance of XxTrees is invoked for each combination of tree sizes satisfy-
ing Equation 4.1. Since the value of ¢ and e define the value of g, no
third loop is required.

XTrees takes a, c, e, g, and Trees as input, and returns an array of
trees. The function consists of three expressions (see Appendix).
The first expression computes the cross product of the sets Trees[c]
and Trees[al, returning a array of array of tree pairs. The (b, d)-th
element of the array is the pair {Trees[c,d], Trees{a,b]}. The sec-
ond expression computes the cross product of the sets Trees[e] and
Trees([g]. The third expression then takes the results of the first two
expressions, computes their cross product, and builds the new trees.

An important feature of the function is that it creates no duplicates.
The caller guarantees that a < c < e < g; therefore, duplicates can oc-
cur only if two adjacent parameters are equal. In which case, the
cross product of their sets is symmetric. We can eliminate the sym-
metry, and thus the duplicates, by structuring the cross products as

(Trees[c] x Trees[a]) x (Trees[e] x Trees[g])

and including the following tests:

1. if ¢ = a, then return only the lower triangle of the cross
product (Figure 11a); else, return the entire product.
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Trees|a] = {x, y, Z} Trees[e] = x, y, 2}
Trees|[c] = {x, y, z} Trees[f] = {x, y, z}
(x,x) (x,Xx) (X:Y) (x,2)
(y,x) (¥,y) (v,y) (y.2)
(z,x) (z,y) (z,2) (z,2z)
(a) (b)
(X, %,%,X) (X,%X,%X,¥) (X,X,X%X,2)
(V,ox,%,%x) (Y,X,%,Y) (y,%,%,2) (Y:.%, YY) (Y,X,Y,2)
(v, ¥, %,%x) (Y, ¥,.%,Y) (¥, 9.%,2) (Y, ¥V:YrY) (¥:¥Y:Yr2Z)
(z,x,%,%) (2,%x,%x,y) (2,%,%,2) (z,X,¥,¥) (2,%,¥%,%x) (2,%x,2,2)
(z,v,%,x) (2,v,%x,y) (z,¥.%x,2) (z,Y.Y,Y) (Z2,¥.¥Y,2) (2,¥,2Z,2)
(z,2,%,%x) (z,2,%,Y) (z,2,%,2) (z,Zz,¥,Y) (Z2,2,¥,2) (z,2,%,2)

(c)

Figure 11 - The results of the expressions in Xtrees fora=c=e =g

2. if e = g, then return only the upper triangle of the cross
product (Figure 11b); else, return the entire product.

3. if ¢ = e, then return only the lower triangle of the cross
product (Figure 11c); else, return the entire product.

The function OneCentroid (see the Appendix) takes i and the array
of oriented trees, and returns the free trees of size i with one cen-
troid. The triple-nested range generator

for a in 0, (i - 1)/4 cross

cina, (1 -1 - a)/3 cross

e in max(c, i/2 - a - ¢), (i -1 -a - c¢c)/2

creates an instance of the body (a call to XTrees) for all combinations
of tree sizes satisfying Equation 4.2. Since the values of a, c, and e set
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the value of g, no fourth loop is required. TwoCentroid (see the Ap-
pendix) takes i and the array of oriented trees, and returns the free
trees of size i with a double centroid. The double-nested range gen-
erator

for b in 1, array_size(Trees[i/2]) cross

d in b, array_size(Trees[i/2])

spawns an instance of the array build operation for every pair of ori-
ented trees of size i/2. Both functions build their respective tree
structures without duplicates and in order.

Our solution relies heavily on the ragged structure of Sisal's arrays
and the semantics of the for expression’s range generator and re-
turns clause. With careful thought and organization, we have been able
to implement the complicated combinatorical requirements of the
| problem without generating duplicates. The Sisal solution is parallel,
and executes in minimal space and time.

5. The Doctor's Office
5.1. Alogical view of the Doctor’'s Office

Given a list of patients and doctors model the following system.
Originally, all patients are well and all doctors are available. Doctors
await patients at their office in a FIFO queue. At random times, pa-
tients become sick, travel to the doctor’s office, and wait in a FIFO
queue to see a doctor. A nurse pairs the first patient and the first doc-
tor in line, and assigns them an examination room. In the examination
room, the doctor cures the patient in a random amount of time. The
patient then rejoins the world and the doctor returns to the nurse’s
' station. Figure 12 shows a logical view of the Doctor’s Office com-
prised of three tasks and four edges. The edges act as FIFO queues of
zero or more values.
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As in Hamming’'s Problem, we are faced with implementing a cyclic
computation. Again we use a for initial expression and rely on the
expression’s loop semantics to satisfy the cyclic dependencies. We
use arrays, not streams, to implement the FIFO queues for reasons that
will become apparent shortly. Unlike Hamming’s Problem, only one of
the three conditions listed in Section 3.2 is satisfied—the initial con-
dition of each edge is known.

Patients_In - empty
Patient_Out - the list of patients
Doctor_Out - the list of doctors

Patient_Doctor - empty

The semantics of the for initial expression implies a sequence of
tasks and synchronization of task input/output that violates the spirit,
if not the letter, of the specification. Ideally, the three tasks should
execute and communicate asynchronously without any constraints.

Unfortunately, Sisal excludes all forms of asynchrony. Its functions
are determinate. Outputs depend only on inputs regardless of archi-
tecture, operating system, system load, or program state. The con-
sumer of a stream cannot test the stream for data availability; if so, the
consumer could be programmed to take different actions depending
on whether or not data had arrived. The function’s outputs would
then depend on the execution speed of the producer, the speed and
congestion of the communication network, and the scheduling policy
of the operation system. Once the consumer tries to read the next
stream value, it must wait until that value arrives. To solve the
Doctor’s Office to the letter of the specification, the three tasks must
continue to execute whether or not new data arrives on all their input
edges. That is, patients must become sick whether or not cured pa-
tients return from the doctor’s office, patient-doctors pairs must leave
the nurse’s station whether or not new patients or doctors arrive, and
patients must be cured whether or not new patient-doctors pairs be-
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Patient_Out Patient_In Doctor_Out

Patient_Doctor

v

Well_Person Nurse Examintations

Figure 12 - A logical view of the Doctor's Office Problem

gin treatment. In Section 5.3 we address this dilemma and propose a
reasonable solution.

5.2. The main function

We define two new types

type queue = array[integer]:

type queue2 = arraylarray[integer]]:;
and write the main function as

for initial

seed = 0;

patient_in := array queue [];

patient_out list_of patients;

doctor_out list_of doctors;

patient_doctor array queue2 []

while true repeat

seed next_seed(old seed):

patient_in well person(seed, old patient_out);

patient_doctor nurse (0ld patient_in, old doctor out):

patient_out, doctor_out := examinations(seed, old patient_ doctor)
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returns stream of patient_in
stream of doctor out
end for

end function

patient_in, patient out, and doctor_out are of type queue; and doc-
tor patient is of type queue2. The initialization segment defines the
initial values of the four arrays and seed. The latter is used by
well person and examinations to drive a random number generator.
The three tasks in the body execute independently consuming the
edge values defined on the previous iteration. The expression returns
a stream of the patient queues, and a stream of the doctor queues.

The expression as written is not correct. Notice that well person
takes as input old patient_ out, the patient(s) cured on the previous
iteration and who are now rejoining the array of well patients. All the
patients that were well on the previous iteration and did not fall sick
are lost. The state has not been retained. The well patients, the pa-
tients and doctors waiting at the nurse’s station, and the patients and
doctors in the examination rooms are persistent sets of data which are
not created and consumed in a single action. Since Sisal functions are
side-effect free and do not retain state between invocation, we must
explicitly maintain and circulate the state from iteration to iteration.

Thus well person must return two sets or arrays: the new sick pa-
tients, and the array of patients that are still well. nurse must return
three arrays: the new patient-doctor pairs, sick patients still waiting
for doctors, and available doctors still waiting for patients. examina-
tions must return three arrays: newly cured patients, newly available
doctors, and patient-doctor pairs still in the examination rooms.
Figure 13 shows the new edges (arrays) and the catenate operations
necessary to reassemble state. The new main function is
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for initial

seed = 0;

still well := list_of_patients;
patient_out := array queue [];

still sick := array queue []:

patient_in := array queue []:;

still_available := list_of_ doctors;

doctor_out := array queue []:;

still_examining := array queue2 [];

patient_doctor array queue2 []
while true repeat

seed := next_ seed(old seed):

still well, patient_in :=

well person(seed, old still well || old patient out);

still_sick, patient_doctor, still available :=
nurse (old still_sick Il old patient_in,

old still_available || old doctor_out):;

still_examining, patient_out, doctor_out :=

examinations (seed, o0ld still_examining || old patient_doctor)

returns stream of patient_in

stream of doctor_out

end for

For simplicity, we have pushed the catenate operations into the pa-
rameter lists of the functions.

5.3. The three tasks

Tasks of iteration i cannot execute until the tasks of iteration (i— 1)
have completed. The loop-carried dependencies impose a constraint
on task execution not specified in the problem description. As ex-
plained in Section 5.1, the tasks of iteration (i — 1) must generate
some output for the tasks of iteration i to execute; otherwise, those
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Figure 13 - The Sisal solution to the Doctor's Office Problem

tasks will hang waiting for data. If we insist that a patient becomes
sick or is cured every iteration, we would further violate the problem’s
specifications. Instead, we force each task to issue either an empty
array (a ghost) of the appropriate type, or a single-element array. Issu-
ing single-element arrays is not a constraint imposed by the language.
We could have written the tasks to issue any number, even a random
number, of patients or patient-doctor pairs. Empty arrays are remov-
ed automatically from the system by the catenate operations.

The code for well person is

function well person (seed: integer; patients: queue

returns queue, gqueue)

let

X := random(seed) ;

size := array size(patients):;

sick := floor(real(size) * x / 0.7) + 1
in

if size = 0 | x >= 0.7 then

patients, array queue []
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else
array_remh (patients[sick: patients[size]l),
array [1l: patients[sick]]
end if
end let

end function

The let clause defines a random number x, computes the number of
well patients, and the index of the patient who may fall sick (call him
Bob). If there are no well patients (size = 0) or no patient falls sick (x
>= 0.7), the function returns the input array patients and an empty
array. Otherwise, the function removes Bob from the array of well
patients by “replacing” his identification number with the identifica-
tion number of the last person in the array, and then removing the last
person. The resulting array is returned as the function’s first result.
Bob’s identification number is placed in an array and returned as the
function’s second result.

The code for nurse and examinations is similar. We refer the
reader to the Appendix.

While our solution to the Doctor’s Office is not perfect, it is close.
Since Sisal explicitly excludes all forms of asynchrony, we could never
hope to solve the problem exactly. The fact that we came as close as
we did to modeling a real doctor’s office is a testimony to Sisal's ro-
bustness and generality.

6.0. Skyline Matrix Problem

6.1. Gaussian elimination without pivoting

In this problem, we are asked to solve the linear system of equa-

tions

Ax=D>b (6.1)
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without pivoting where A is a skyline matrix. A skyline matrix has
nonzero values in row iin columns k through i 1 < k < i, and nonzero
values in column j in rows k through j, 1 < k <j. The values of k are
stored in two vectors: row and column. Figure 14 depicts a skyline
matrix and its associated row and column vectors. Notice how the
nonzero values form a skyline both above and below the diagonal.

A traditional solution method for linear systems of equations is
Gaussian elimination without pivoting. The method reduces A to the
triangular matrix A’, and b to the column vector b’ such that

A" x=Db (6.2)

A’ can be either upper or lower triangular. Equation 6.2 is then solved
using a method known as back substitution.

The Sisal algorithm developed in Section 6.3 forms a lower triangu-
lar matrix. The reduction occurs in n - 1 steps, one step per row. To
eliminate the upper triangular matrix we step backwards from n to 1.
At step i, we reduce the system as follows

Aj.k = Aj.k - (Ai,k b Aj,i / Ai,i), 1 Sj <i,1<k<i (631)

and
b_] = bj— (b Aj,i / AL, 1<j<i (6.3.2)

The elements in rows i through n, and in columns i + 1 through n re-
main unchanged. The reduction’s effect is to set the values in column
i above the diagonal to zero, thereby, eliminating the i-th column in
the upper triangular matrix. Row i and column i are referred to as the
pivot row and pivot column, respectively. A;; and b; are referred to as
the pivot element of A and the pivot element of b, respectively. On
completion, A’ will consist of the n pivot rows, and b’ will consist of
the n pivot elements of b.
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Figure 14 - A skyline matrix and associated row and column vectors

To solve for x, we first solve for x;
x1=b"1 /A1) (6.4.1)
Once we have x;, we can solve for x
x2 = (b2 — A'21 x1)/ A'22 (6.4.2)
and then for x3

x3 = (b's - A’'31 x1 - A'3,2 x2)/ A'33 (6.4.3)

and so on.

6.2. An efficient representation of a skyline matrix in Sisal

The key to an efficient implementation of the Skyline Matrix
Problem is eliminating the zeros at the beginning of each row and col-
umn, and eliminating the computations involving those zeros. Sisal’s
ragged array structure is ideally suited for this problem. Since a “two-
dimensional” array in Sisal is an array of arrays, and since each com-
ponent array can have a different size and lower bound, we can elimi-
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nate the zeros at the head of each row by setting the lower bound of
component ito row[i]. Recall that row and column store the location
of the first non-zero element in each row and column. Since the
component arrays must be continuous, we can eliminate some, but not
all, of the zeros above the diagonals by setting the upper bound of each
component array to the index location of the last non-zero element in
the row. For example, the zeros in columns 5 through 7 of the first
row in the array shown in Figure 14 can be eliminated by setting the
upper bound of row 1 to 4; however the zeros in column 2 and 3 re-
main.

We can eliminate all the zeros by splitting A into its lower and up-
per triangular submatrices and transposing the upper. We refer to the
former as L and the latter as U (even though it is really U-transpose).
Under this decomposition, all leading zeros fall at the head of rows
and can be eliminated by setting the lower bound of the i-th compo-
nent of L and U to row[i] and column[i], respectively. Figure 15
shows such a decomposition. The Sisal code to build the two arrays is

L := for i in 1, n cross j in row[i], 1
returns array of A[i, j]
end for;
U := for i in 1, n cross j in column[i], 1
returns array of A[j, i)

end for;

Both expressions return a “two-dimensional” array of n rows. The
lower bound of each row is the first value of the inner range, either
row[i] or column[i], and the upper bound is i; thus, each row stores
only nonzero elements. The transpose in forming U is effected by re-

versing i and j in the read.
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Figure 15 - A skyline matrix decomposed into L and U

6.3. An efficient algorithm based on the Sisal decomposition

Having eliminated all the zeros that lie outside the skyline, we must
now develop an efficient algorithm that takes 1L, U, and b, and returns
A prime and b_prime. Eliminating the lower triangle of A would re-
quire us to work with the columns of L and U. Since Sisal arrays are
row-oriented, column-oriented algorithms are more complex and less
efficient. Instead, if we eliminate the upper triangle of A, we will work
with the rows of L and U, a much easier and more straightforward

proposition.

The following for initial expression implements the iterative
algorithm described in Section 6.1,
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A prime, b prime :=

for initial

i = n;

pivot b = b[n];

pivot_2Aa = L[n];

L1, Ul, bl := reduce(n, L, U, b)

while i > 1 repeat

i :=01d 1 - 1;
pivot_b := old bl[i];
pivot A := old L1[i];
L1, Ul, bl := reduce(i, old L, old U, old b)

returns array of pivot_A
array of pivot_ b

end for

The expression steps backwards in single steps from n to 1. Each it-
eration defines a new value of L1, U1, and b1 “reduce”d from the ar-
rays’ previous values, and contributes one element to A prime and
b _prime. The contributed values are: L1[i], the i-th pivot row, and
bl[i], the i-th pivot element of b.

A common mistake that novice Sisal programmers make is to build
A prime and b_prime in the body one element at a time, and carry the
partial arrays from iteration to iteration. They append each iteration’s
contribution to partial built arrays using array addh,

A prime := array_addh(old A prime, A pivot);
b_prime := array_addh(ecld b prime, b _pivot):

This complicates the expression, and is not necessary. Novices fail to
understand that Sisal expressions return values, including arrays, as a
consequence of their execution. They continue to think imperatively,
describing both the “what” and “how” of the computation.

The function reduce implements Equations 6.3.1 and 6.3.2. Re-
writing the expressions in terms of L and U, we have
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Lix = Ljk - (Lik® Uiy / Lii) (6.5.1)
Ujk = Ujk - (Lij® Uik / Li,1) (6.5.2)
bj =Dbj-(b;*Ui; / L) (6.5.3)

where 1 <j<iand 1 < k<j. We can express the three equations in
Sisal as

Ll := for jin 1, 1 - 1 cross k in 1, J

returns array of

old L1[j,k] - (old L1[i,k] * old Ul[i,3j] / old L1[i,i])
end for;
Ul := for j in 1, 1 - 1 cross k in 1, j

returns array of

old Ul[j,k] - (old L1{i,j] * old Ul{i,k] / old L1l{i,i])

end for;
bl := for jin 1, i -1
returns array of
old bl[j] - (old bl[i] * old Ul[i,3j] / old L1[i,i])
end for;

Notice that 1.1, U1, and b1 are one element smaller than their old
counterparts. Because old L1 and old Ul are compressed some ele-
ments may be missing. Reading a missing element will return an er-
ror value, which we can test for error using the intrinsic function is
error. is error(x) returns true if x is an error value; else, it returns

false.

If old Ul[i, 3] is missing (i.e., the pivot column element is zero),
Equations 6.5.1 and 6.5.3 reduce to

Lix = Ljk
bj bj

for 1 < k <j. If the value is present, then elements of the j-th row of L
will change, but only elements from the minimum of the lower bounds
of o1d 1L1[i] and old L1[3j] to j will change. The other elements are
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zero and will remain zero. If old L1[i, j] is missing (i.e., the pivot
row element is zero), Equation 6.5.2 reduces to

Ujk = Ujk

for 1 < k <j. If the value is present, then elements of the j-th row of U
will change, but only elements from the minimum of the lower bounds
of 01d U1[i] and o1d U1[]j] to j will change. The other elements are
zero and will remain zero. The Appendix gives the revised Sisal ex-
pression for L1, U1, and bl in function reduce.

Once we have A prime and b_prime, we can solve for x according to
Equations 6.4. The Sisal code is straightforward and we leave it as an
exercise for the reader (see the Appendix for our solution).

Despite Sisal’s high-level functional semantics, we have developed
an efficient solution of the Skyline Matrix Problem which stores only
nonzero elements and avoids all computation involving zero elements.
Moreover, at any time, the program’s data structures store only essen-
tial information. The belief that functional languages are unable to ex-
press scientific computations, and that array operations in these lan-
guages are unnatural and inefficient is just not true. The Sisal code is
more efficient, easier to understand, and certainly closer to the math-
ematics of the problem than the Fortran solution presented in [2].

7.0 Conclusions

In this chapter we have presented Sisal solutions to the four Sali-
shan problems. All the solutions are parallel, and preliminary studies
show that compile-time analysis [1, 6] can eliminate all unnecessary
copying and memory management operations. We expect these solu-
tions to execute as fast as imperative solutions on conventional multi-
processor systems. We were able to meet problem specifications in
three of the four cases. In the odd case, the Doctor’s Office, the non-
deterministic nature of the problem prevents us from implementing
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the problem exactly as specified. Given the havoc which unintended
nondeterminism wreaks in the development of correct parallel pro-
grams, we do not apologize for the “shortcoming” of determinacy in
Sisal, |

We wish to leave the reader with three important facts. First, Sisal
can express a wide variety of problems, not just scientific computa-
tions. The language supports a robust set of array operations without
violating functional semantics.

Second, functional programming is more abstract than imperative
programming. Since Sisal programs encode only the “what” and not
the “how” of problem solutions, the Sisal programmer is not encum-
bered by many tedious and picayune details. The mathematical seman-
tics of Sisal provide the scientific programmer with a natural and fa-
miliar medium in which to express his computations. We do not want
to teach scientists yet another language; on the contrary, we want to
return them to their mathematical roots.

Third and most important, all four Sisal programs are parallel, de-
terminate, and deadlock free. The codes will run on any computer
system, regardless of topology or number of processors, in parallel and
without rewriting. Yet at no time did we ever think about parallelism,
communication, synchronization, or task scheduling. We simply de-
signed a mathematical solution to the problem, and then translated it
into Sisal code. Compare this to the imperative solutions presented
in this book in which considerable time and effort is expended manag-
ing parallelism, communication, synchronization, and task scheduling.
Truly, writing parallel programs in a functional language is free.
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[ 3
Appendix
/*************************************/

/** Hamming's Problem, Extended * % /
/*************************************/

define hamming

type OneDim = arraylinteger];
type Istream stream[integer];

function powers(n, prime: integer; in_stream: Istream
returns Istream)

for initial

token = stream first(in_stream);
s_stream := stream rest (in_stream);
b_stream := stream [token * prime]

while token < n repeat
token, s_stream, b _stream :=

let
S_token := stream first(old s_stream);
b_token := stream first(old b_stream)
in
if stream empty(old s_stream) then

b_token,
old s_stream,
stream append(stream_ rest (old b_stream), b_token * prime)
elseif b_token < s_token then
b token,
old s_stream,
stream_append(stream rest(old b_stream), b_token * prime)
else
s_token,
stream_rest (old s_stream),
stream_append(old b_stream, s_token * prime)
end if
end let
returns stream of token when token <= n

end for
end function % powers

function hamming (n: integer; primes: OneDim
returns Istream)

for initial
i := 0;
S_stream stream [1]
while i < array_size (primes) repeat
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i := o0ld i + 1;

s_stream := powers(n, primes([i], old s_stream)
returns value of s_stream
end for

end function % hamming

/*****‘k*********************/

[ x* Paraffins Problem *% /
/****************‘k‘k*****‘k***/

define Paraffins

type trees = array [character];
type TreeArrayl array [trees];
type TreeArray?2 array [TreeArrayl];

function Xtrees(a, ¢, e, g: integer; Trees: TreeArray?2
returns TreeArrayl)

let
CxA := 1f ¢ = a then
for d in 1, array size(Trees[c]) cross
b in 1, 4
returns array of Trees[c, d] || Treesla, Db]
end for
else
for d in 1, array size(Trees[c]) cross
b in 1, array size(Trees[a])
returns array of Treesc, d] || Trees[a, b]
end for
end if;
ExG := if e = g then
for £ in 1, array_size(Trees[e]) cross
h in £, array_size(Trees[e])
returns array of Trees[e, f] || Trees[g, h]
end for
else
for £ in 1, array size(Trees[e]) cross
h in 1, array size(Treeslgl)
returns array of Trees[e, f] || Trees[g, hl]
end for
end if
in
if ¢ = e then
for d in 1, array size(CxA) cross
b in 1, array size(CxA[d]) cross
£f in 1, d cross
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h in 1, array_size(ExG[f])
returns value of catenate

array [1: "(C" || CxA[d, b] || ExG[f, h] || ™)"]
end for
else
for d in 1, array size(CxA) cross
b in 1, array size(CxA[d]) cross
f in 1, array_size (ExG) cross

h in 1, array size(ExG[f])
returns value of catenate
array [1: "(C" || CxA[d, b] [| ExG[f, h] (| ™)"]
end for
end if
end let

end function % Xtrees

function OrientedTrees (n: integer returns TreeArray2)

for initial
i = 2;
Trees := array [0: array [1: ""],
array [1: "(C)"],
array [1: "(C(C))"]]

while i < n repeat

i := o0ld i + 1;
set_i := for ¢ in 0, (i - 1) / 3 cross
einc, (1 -1-¢) / 2
g:=1i-1-c¢c--e
returns value of catenate Xtrees(0, c, e, g, old Trees)
end for:;

Trees array addh(old Trees, set_1i)
returns value of Trees
end for

end function % Oriented Trees

function OneCentroid(i: integer; Trees: TreeArray2
returns TreeArrayl)

for a in 0, (i - 1) / & cross
c ina, (1 -1 - a) / 3 cross
e in max{(c, i/2 - a-¢), (i -1 -a-¢) /2

g:=i-1-a-c¢c-e¢€
returns value of catenate Xtrees(a, ¢, e, g, Trees)
end for

end function % OneCentroid

function TwoCentroid(i: integer; Trees: TreeArray2
returns TreeArrayl)
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for b in 1, array_size(Trees[i/2]) cross

d in b, array_size(Trees[i/2])
returns value of catenate

array [1: "(" || Trees([i/2, bl || Trees[i/2, d] || ")"]
end for

end function % TwoCentroid

function Paraffins(n: integer returns TreeArrayZ2)

let
Trees := OrientedTrees(n / 2)
in
for i in 1, n
isomer := if mod(i, 2) = 1 then
OneCentroid(i, Trees)
else
OneCentroid(i, Trees) || TwoCentroid(i, Trees)
end if
returns array of isomer
end for
end let

end function % Paraffins

/*********************************/

/*x* Doctor's Office Problem *% /
/**********)\'*******‘k**************/

define doctors_office

type queue = array [integer];
type queue2 = array [array [integer]]:;
global random (seed: integer returns real)

global next seed (seed: integer returns integer)

function well persons (seed: integer; patients: queue
returns queue, gueue)

let

x = random(seed) ;

size := array_size(patients):

sick := floor(real(size) * x / 0.7) + 1
in

if size = 0 | x >= 0.7 then
patients, array queue []
else
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array remh(patients[sick: patients[size]]),
array [l: patients(sick]]
end if
end let

end function % well persons

function nurse(patients: queue; doctors: queue
returns queue, queueZ, queue)

let
n_patients := array_size(patients);
n_doctors := array_size(doctors)
in
if (n_patients = 0) | (n_doctors = 0) then
patients, array queue2 [], doctors
else
array_setl(array_reml (patients), 1),
array [l1: array [1l: patients[l], doctors[1l]]],
array_ setl(array reml (doctors), 1)
end if
end let

end function % nurse

function examinations (seed: integer; in_exam: queue2
returns queue2, queue, gueue)

let
X := random(seed) ;
size := array_limh(in_exam);
cured := floor(real(size) * x / 0.3) + 1
in
if size = 0 | x >= 0.3 then
in_exam, array queue [], array queue []
else
array_ remh(in_exam[cured: in_exam[size]l),
array [1: in_exam[cured, 111,
array [1l: in_exam[cured, 2]]
end if
end let

end function % examinations

function doctors_office (list_of_patients, list_of doctors:

returns stream[queue], stream[queue])

for initial
seed = 0;
still well list_of_ patients;
patient_out array queue [];

queue
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still sick := array queue [];
patient_in array queue [];
still available list_of _doctors;
doctor_out array queue [];
still_examining array queue2 [];
patient doctor array queue2 []
while true repeat
seed := next_seed(old seed);
still well, patient_in :=
well persons(seed, old still_well || old patient_out);
still_sick, patient_doctor, still available :=
nurse (old still_sick [l old patient in,
old still_available || old doctoxr out);
still_examining, patient_out, doctor_out :=
examinations (seed, old still examining |
returns stream of patient_ in
stream of doctor_out
end for

It

I

| old patient_doctor)

end function % doctors_office

/********************************/

[ ** Skyline Matrix Problem ** /
/********************************/

define skyline

type OneDim = arrayl[reall;
type TwoDim array[OneDim];
type IntDim array[integer];

function form skyline(n: integer; row, column: IntDim; A: TwoDim
returns TwoDim, TwoDim)

for i in 1, n cross j in row([i], i
returns array of A[i, j]
end for,

for i in 1, n cross j in column(i], i
returns array of A[Jj, 1i]
end for

end function % form skyline

function reduce(i: integer; L1, Ul: TwoDim; bl: OneDim
returns TwoDim, TwoDim, OneDim)

% reduce L1
for j in 1, i - 1 returns array of

47
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if is error(Ul(i, jl) then
L1(3]
else
for k in min(array liml(L1[i]), array liml(L1[j]1)), 3
returns array of
if is error(L1l{i, k]) then
L1l{3, k]
elseif is error(Ll1[3j, k]) then
- (L1[%, k} * Ul{i, 3)) / Lifi, i)
else
L1[j, k] - (Lifi, k] * Uulli, 31) / Li[i, i]
end if
end for
end if
end for,
% reduce Ul

for j in 1, i1 - 1 returns array of
if is error(L1l[i, 3]) then
Ull3Jjl

else
for k in min(array_ liml(Ul(il), array_1iml(Ul[31)), 3

returns array of
if is error(Ul(i, k]) then

Ul{3, kil
elseif is error(Ul[j, k]) then
- (Li[i, 31 * Ulli, k1) / L1[3i, i]

else
Ullj, k] - (L1[i, j) * Ulli, k1) / L1[i, i]
end if
end for
end if
end for,

% reduce bl

for j in 1, i - 1 returns array of

if is error(Ul[i, j]) then
bl([jl

else
bl[4] - (b1[i] * Ul[i, 3jl) / Llli, i)

end if

end for
end function % reduce
integer; L, U: TwoDim; b: OneDim

function eliminate(n:
returns TwoDim, OneDim)

for initial
i
pivot_b

= n;
bn];
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pivot_a := L[n];
L1, Ul, bl := reduce(n, L, U, b)
while i1 > 1 repeat
i :=o0ld i - 1;
pivot_b = old bll[i];
pivot_A = o0ld L1I[i};
Ll, Ul, bl := reduce(i, old L1, old Ul, old bl)

returns array of pivot_A
array of pivot b
end for

end function % eliminate

function backsolve(n: integer; A prime: TwoDim; b prime: OneDim

returns OneDim)

for initial

i := n;
j o= 1;
A := A prime;
b := b _prime;
x := b(nl / A[n, 1]
while i > 1 repeat
i:=01d1i - 1;
j :=o0ld j + 1;
b := for k in 1, i
b _k := if is error(A primel[k, old j]) then
old blk]
else
old b[k] - old x * A prime[k, old j]
end if
returns array of b k
end for;

x b[i]l / ali, 3]
returns array of x
end for

end function % backsolve

function skyline(n: integer; row, column: IntDim;
A: TwoDim; b: OneDim
returns OneDim)

let
L, U := form skyline(n, row, column, A);
A prime, b_prime := eliminate(n, L, U, b)
in
backsolve(n, A prime, b prime)
end let

end function % skyline
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